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Abstract

A linear regression approach was used to correlate experimentally-determined Colburn j-factors and Fanning friction factors for flow
of liquid water in helically-finned tubes. Experimental data came from eight enhanced tubes with helix angles between 25� and 48�, num-
ber of fin starts between 10 and 45, fin height-to-diameter ratios between 0.0199 and 0.0327, and Reynolds numbers ranging from 12,000
to 60,000. The current study revealed that, in helically-finned tubes, logarithms of both friction and Colburn j-factors can be correlated
with linear combinations of the same five simple groups of parameters and a constant. The proposed functional relationship was tested
with independent experimental data yielding excellent results.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Industrial use of heat transfer enhancement has become
widespread. The goal of heat transfer enhancement is to
reduce the size and cost of heat exchanger equipment.
Webb [1] gives an excellent overview of different enhance-
ment mechanisms available in commercial tubes.

One contemporary enhancement geometry is the helical
fin shown in Fig. 1, which is described by several geometric
variables. Fig. 1 also provides a pictorial description of
these variables, which include: the fin height (e), the fin
pitch (p), the helix angle (a), number of starts (Ns), and
included angle (b). The fin height is the distance measured
from the internal wall of the tube to the top of the fin. The
fin pitch is the distance between the centers of two fins mea-
sured in the axial direction. The helix angle is the angle the
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fin forms with the tube axis. The number of starts refers to
how many fins one can count around the circumference of
the tube. Finally, the angle at which the sides of the fin
meet is called the included angle.

An extensive literature survey of research on helically-
finned tubes is given in Zdaniuk [2]. Despite a considerable
amount of study, the characteristics of flow inside helically-
finned tubes are still not very well understood because the
physics governing the flow are very complex and experi-
mental data are limited. The current approach to predict-
ing pressure drop and heat transfer in helically-finned
tubes is to use algebraic correlations based on least-squares
regression. Regression techniques performed on experi-
mental data require mathematical functional form assump-
tions, which limit their accuracy and generality. To address
these limitations, techniques that can effectively overcome
the complexity of the problem without ad hoc assumptions
are needed. One of these techniques is symbolic regression
by means of genetic programming.

Genetic programming (GP) is a method that works with
a set of possible operators to obtain optimum functional
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Fig. 1. A helically-finned tube and its geometric variables.

Nomenclature

a correlating parameter vector
D tube diameter (m)
e fin height (m)
f Fanning friction factor
j Colburn j-factor: j = StPr2/3

MSE mean squared error MSE ¼P
value from experiment�predicted valueð Þ2

number of measurements

Ns number of fin starts
Nu Nusselt number
p axial fin pitch (m)
Pr Prandtl number
Re Reynolds number

St Stanton number
t average rib width (m)
v vector of correlation constants

Greek symbols

a helix angle (�)
b included angle (�)

Subscripts

f refers to the friction coefficient
j refers to the Colburn j-factor
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relationships for a given data set [3]. This method should
not be confused with the genetic algorithm (GA) which is
an optimization technique based on stochastic, evolution-
ary principles that is used to find global extrema of a given
function [4,5]. Sen and Yang [6] described the scope of arti-
ficial neural networks3 and genetic algorithm techniques in
thermal science applications including an exhaustive bibli-
ography. Recently, a methodology for obtaining heat
transfer correlations by means of symbolic regression was
published by Cai et al. [8]. Otherwise, applications of GP
in heat transfer are scarce.
2. Experimental data

An experimental program devised to measure turbulent
pressure drop and heat transfer in helically-finned tubes
3 Artificial neural networks are another type of artificial intelligence
technique [7].
was conducted at Mississippi State University. The experi-
mental apparatus and procedure are described in detail in
Zdaniuk et al. [9]. Eight enhanced tubes and one plain tube
were tested inside a double-pipe counter-flow heat exchan-
ger with hot water flowing on the inside and cold water in
the annulus side. The tubes were manufactured for con-
denser applications. The internal geometric parameters of
each tube are delineated in Table 1. The tube material
was copper–nickel. The internal fins were 0.48-mm thick
at the base and 0.2-mm thick at the tip, yielding an
included angle b of 41�. Table 1 lists dimensionless factors
e/D, p/e, and p/D. These dimensionless parameters allow a
more direct comparison between the tubes and provide
more physical insight into the results. Table 1 does not
explicitly indicate that the helix angle and the number of
starts are dimensionless parameters. However, since these
parameters are unitless, they can be treated as such. There-
fore, a and Ns can be used as direct parameters in any
correlation.

Experimentally determined Fanning friction factors (f)
and Colburn j-factors are plotted in Figs. 2 and 3. The
uncertainty in the measured friction factor and heat trans-
fer coefficient was calculated at 15% and 10%, respectively.
The errors between plain tube results and the Blasius and
Dittus-Boelter equations were within the uncertainty limits,
thus validating the experimental apparatus.

Zdaniuk et al. [9] used a power law regression-based
procedure to correlate the experimental data shown in
Figs. 2 and 3 in the following manner:

f ¼ 0:128Re�0:305N 0:235
s ðe=DÞ0:319a0:397 ð1Þ

j ¼ 0:029Re�0:347N 0:253
s ðe=DÞ0:0877a0:362 ð2Þ

Eqs. (1) and (2) were shown to predict the vast majority of
experimental data with an error of less than 10%. The
mean squared prediction errors (MSEs) of Eqs. (1) and
(2) were MSE = 1.070 � 10�6 and MSE = 6.945 � 10�8,
respectively. The performance of Eqs. (1) and (2) is illus-
trated in Figs. 4 and 5, respectively.



Table 1
Internal geometry of the test tubes

Tube # Internal structure Dimensionless factors

D (mm) e (mm) P (mm) Ns a (�) e/D p/e p/D

1 15.64 0.38 10.54 10 25 0.0243 27.729 0.674
2 15.61 0.375 3.51 30 25 0.0240 9.348 0.225
3 15.62 0.38 1.47 30 48 0.0243 3.876 0.0941
4 15.57 0.38 2.33 45 25 0.0244 6.134 0.150
5 15.6 0.31 1.56 45 35 0.0199 5.017 0.100
6 15.57 0.38 1.55 45 35 0.0244 4.085 0.100
7 15.59 0.51 1.55 45 35 0.0327 3.048 0.100
8 15.58 0.38 0.98 45 48 0.0244 2.577 0.0629
9 15.65 Plain
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Fig. 2. Measured Fanning friction factors for the eight tube geometries used in the current study, plotted with the Blasius (smooth tube) correlation.
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Fig. 3. Measured Colburn j-factors for the eight tube geometries used in the current study, plotted with the Dittus-Boelter (smooth tube) correlation.
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Zdaniuk et al. [10] used a feed-forward artificial neural
network approach [11] to correlate the experimental data
shown in Figs. 2 and 3. Zdaniuk et al. [10] determined that
the optimal network architecture to correlate friction or j-
factors consisted of 4 log-sigmoid nodes in the input layer
and 1 linear node in the output layer. The neural networks
performance was superior to the power law correlations,
provided enough data were given for training. The 4-1
feed-forward networks trained with 50% of experimental
data exhibited outstanding results with mean squared pre-
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Fig. 4. Scatter plot illustrating the predictive performance of Eq. (1) for
Fanning friction factor.
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Fig. 5. Scatter plot illustrating the predictive performance of Eq. (2) for
Colburn j-factor.
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Fig. 6. Scatter plot indicating the performance of the 4-1 feed-forward
neural network trained with 50% of friction data.
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Fig. 7. Scatter plot indicating the performance of the 4-1 feed-forward
neural network trained with 50% of j-factor data.
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diction errors (MSEs) equal to 8.362 � 10�9 for the friction
factor network and 1.965 � 10�9 for the Colburn j-factor
predictions. The performance of these two networks is
illustrated in Figs. 6 and 7, respectively.

The artificial neural network (ANN) method is an
excellent tool in correlating complex data. The ANN does
not know and does not have to know what the physics of
the problem are. The ANN completely bypasses simplify-
ing assumptions such as the use of a power-law equation.
On the other hand, any unintended and biased errors in
the training data set are also picked up by the ANN. As
noted by Sen and Yang [6], the trained ANN is therefore
not better than the training data, but not worse either.
Although the performance of artificial neural networks is
superior to algebraic equations, their implementation is
not straightforward. For example, the relatively simple
4-1 feed-forward networks mentioned above require 20
constants and linear algebra computations. Simple alge-
braic correlations such as Eqs. (1) or (2) require much less
‘‘computational effort” and can be easily carried out by a
handheld calculator. This paper presents simple algebraic
correlations that outperform the accuracy of Eqs. (1) and
(2).
3. Correlation development

The information presented so far demonstrates that
symbolic regression can be a compromise between the com-
plexity of the ANN method and inaccuracy resulting from
fitting the data to an assumed functional form (e.g., a
power law). The genetic program removes the burden of
functional form assumptions and can be controlled to yield
uncomplicated equations. The approach taken in this study
was to feed the parameters e/D, a, Ns, and ln (Re) into the
genetic program in order to correlate them with ln (j) and
ln (f). The natural logarithms of Re, f, and j were graphi-
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cally identified as more accurate correlating parameters
than simply Re, f, and j. The genetic program used for this
study was a freely available MATLAB Toolbox developed
by Madár et al. [12]. The genetic program identified the fol-
lowing simple groups of parameters:

a1 ¼ e=D ð3Þ

a2 ¼
ðe=DÞðaÞ

N s

ð4Þ

a3 ¼ aN s ð5Þ

a4 ¼
ðe=DÞ

N s

ð6Þ

a5 ¼ lnðReÞ ð7Þ

An attempt at assigning a physical meaning to the above
parameters follows. a1 is the dimensionless fin height. The
a2 term is of a form proportional to the tube severity fac-
tor. U defined as e2/pD [13], which indicates the ‘‘intensity”

of tube augmentation. Due to the complexities of flow in
helically-finned tubes [2], the role of parameters a3 and a4

is difficult to identify. Nevertheless, the combination of
the two would seem to determine the blockage of flow near
the wall and the consequent development of skimming
flow. For example, the higher a or Ns the higher the prob-
ability that the flow will stall or separate near the wall due
to form or shear drag. On the other hand, the higher the e/
D, the more likely the flow is to follow the inter-fin space.
Finally, parameter a5 accounts for the Reynolds number
vf ¼ ½ 7:893 17:799 �5:283� 10�5 �692:383 �0:330 �1:027 � ð13Þ

and

vj ¼ ½ 12:666 �1:220 2:598� 10�4 �38:656 �0:374 �2:004 � ð14Þ
dependence.
Rather than relying on the genetic program to correlate

the parameters a1 through a5, the idea was to test their lin-
ear combination such that

lnðf Þ ¼ vf ;1ðe=DÞ þ vf ;2
ðe=DÞðaÞ

N s

þ vf ;3ðaN sÞ

þ vf ;4
ðe=DÞ

N s

þ vf ;5 lnðReÞ þ vf ;6 ð8Þ

and

lnðjÞ ¼ vj;1ðe=DÞ þ vj;2
ðe=DÞðaÞ

N s

þ vj;3ðaN sÞ þ vj;4
ðe=DÞ

N s

þ vj;5 lnðReÞ þ vj;6 ð9Þ

where vf,1 through vf,6 and vj,1 through vj,6 are constants to
be determined. Both f and j were assumed to depend on the
same parameters following the theory of heat-momentum
analogy [14]. Eqs. (8) and (9) can be rewritten using matrix
algebra:
lnðf Þ ¼ vf � a ð10Þ
lnðjÞ ¼ vj � a ð11Þ

where vf and vj are vectors of constants and a is the corre-
lating parameter vector

a ¼

a1

a2

a3

a4

a5

1

2
666666664

3
777777775

ð12Þ

As can be seen, the form of Eqs. (10) and (11) is very
simple. In order to find constants vf and vj, Eqs. (10) and
(11) are written for each data point and a weighted least
squares regression is performed [15]. Note that Eqs. (10)
and (11) are nonlinear in f or j but linear in ln(f) or ln (j).
Using a first-order Taylor series approximation one
obtains ln (f) � ln (fo) = (1/fo)(f � fo) implying that an error
in ln (f) is, to a first-order approximation, proportional to
an error in f, where the proportionality multiplier factor
is (1/fo). The same is done for the expansion of ln (j). As
a result, a weighted least squares using the reciprocals of
f and j as the weights is used in the linear regression for
Eqs. (10) and (11). For the experimental data of the current
study, the constants vf and vj were found to be
so that

lnðf Þ ¼ 17:893ðe=DÞ þ 17:799
ðe=DÞðaÞ

N s

� 5:283� 10�5aN s � 692:383
ðe=DÞ

N s

� 0:33 lnðReÞ � 1:027 ð15Þ

lnðjÞ ¼ 12:666ðe=DÞ � 1:220
ðe=DÞðaÞ

N s

þ 2:598� 10�4aN s � 38:656
ðe=DÞ

N s

� 0:374 lnðReÞ � 2:004 ð16Þ

Eq. (15) predicts experimental friction factors with a
MSE of 7.564 � 10�8 (versus 8.362 � 10�9 for the ANN
and 1.070 � 10�6 for Eq. (1)) and the comparison of pre-
dicted and experimentally-determined friction factors is
illustrated in Fig. 8. Similarly, Eq. (16) predicts experimen-
tal Colburn j-factors with a MSE of 1.640 � 10�8 (versus
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Fig. 8. Scatter plot indicating the predictive performance of Eq. (15).
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1.965 � 10�9 for the ANN and 6.945 � 10�8 for Eq. (2))
and the comparison of predicted and experimentally-deter-
mined j-factors is shown in Fig. 9. Figs. 8 and 9 demon-
strate that Eqs. (15) and (16) predict experimental data
very well. The highest errors were associated with tube 1
where a different Reynolds number dependence can be
noticed for both friction and j-factors. This inconsistency
could be linked to the fact that tube 1 had only 10 starts
and 25� helix angle and demonstrated more smooth-tube
like behavior compared to the remaining tubes (see Figs.
2 and 3). Nonetheless, Figs. 8 and 9, as well as the mean
squared errors demonstrate that Eqs. (15) and (16) with a
linear combination of five terms obtained from a set of four
independent variables, predict experimental data much bet-
ter than Eqs. (1) and (2) with a power law applied to the
same four independent variables. Neither prediction is
nearly as good as that of the artificial neural networks
which contained 20 degrees of freedom. Of course, one
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Fig. 9. Scatter plot indicating the predictive performance of Eq. (16).
would expect an improvement in performance as the num-
ber of coefficients to be determined is increased from four
to five and then to 20. For most practical purposes, the
simplicity of Eqs. (15) and (16) is worth the minor loss of
accuracy relative to the artificial neural network approach.
Finally, it is important to mention that Eqs. (15) and (16)
fail to predict hydraulic and thermal performance of
smooth tubes.

4. Evaluation of the proposed functional form with

independent experimental data

Webb et al. [16] used a double-pipe counter-flow heat
exchanger set up with liquid water on the inside and boiling
R-12 on the annulus side to measure Fanning friction fac-
tors and Colburn j-factors of eight helically-finned tubes at
Reynolds numbers between 20,000 and 80,000. Table 2
provides the internal geometry of the helically-finned tubes
tested by Webb et al. [16]. Table 2 tubes are numbered W1
through W8 in order to distinguish them from the tubes
used in the current study.

Zdaniuk et al. [9,10] evaluated the performance of Eqs.
(1) and (2) and the artificial neural networks with experi-
mental data of Webb et al. [16] and concluded that there
is a bias error between the experimental data of the current
study and that of Webb et al. [16]. Therefore, the objective
of this section is to simply test the functional form of Eqs.
(8) and (9) rather than to predict the data of Webb et al.
[16] with Eqs. (15) and (16). With this in mind, the experi-
mental data of Webb et al. [16] was used to perform a least
squares regression in order to determine new constants vf

and vj:

vf ¼ ½13:260 8:077 9:594� 10�5

� 400:516 � 0:287 � 1:802� ð17Þ

and

vj ¼ ½�1:192� 10�2 7:282 � 1:515� 10�4

� 560:4 � 0:1752 � 2:629� ð18Þ

The equations that correlate the data of Webb et al. [16] are
then

lnðf Þ ¼ 13:26ðe=DÞ þ 8:077
ðe=DÞðaÞ

N s

þ 9:594� 10�5aN s � 400:516
ðe=DÞ

N s

� 0:287 lnðReÞ � 1:802 ð19Þ

lnðjÞ ¼ �1:192� 10�2ðe=DÞ þ 7:282
ðe=DÞðaÞ

N s

� 1:515� 10�4aN s � 560:4

ðe=DÞ
N s

� 0:1752 lnðReÞ � 2:629 ð20Þ

Eq. (19) predicts Webb et al. [16] friction factors with a
MSE of 8.702 � 10�8. This performance is shown graphi-
cally in Fig. 10. Similarly, Eq. (20) predicts Webb et al.



Table 2
Tubes tested by Webb et al. [16]

Tube # I.D. (mm) E (mm) p (mm) t (mm) Ns a e/D p/e p/D

W1 15.54 plain
W2 15.54 0.327 1.08 0.265 45 45� 0.0210 2.81 0.0591
W3 15.54 0.398 1.63 0.28 30 45� 0.0256 3.50 0.0896
W4 15.54 0.43 4.88 0.325 10 45� 0.0277 9.88 0.273
W5 15.54 0.466 1.74 0.275 40 35� 0.0300 3.31 0.0993
W6 15.54 0.493 2.79 0.28 25 35� 0.0317 5.02 0.159
W7 15.54 0.532 4.19 0.28 25 25� 0.0342 7.05 0.241
W8 15.54 0.554 5.82 0.28 18 25� 0.0356 9.77 0.348
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Fig. 10. Scatter plot indicating the performance of Eq. (19) for friction
factors of Webb et al. [16].
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Fig. 11. Scatter plot indicating the performance of Eq. (20) for j-factors of
Webb et al. [16].
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[16] j-factors with a MSE of 1.930 � 10�9 and its perfor-
mance shown graphically in Fig. 11. Figs. 10 and 11, as
well as the mean squared errors demonstrate that Eqs.
(19) and (20) correlate the data of Webb et al. [16] very
well, but again, do not perform well for prediction of
smooth tube performance.
5. Conclusions

The principal finding of the current investigation is the
fact that in helically-finned tubes both Fanning friction fac-
tors and Colburn j-factors can be correlated with exponen-
tials of linear combinations of the same five simple groups
of parameters and a constant. The performance of the pro-
posed correlations is much better than that of the power-
law correlations and only slightly worse than that of the
artificial neural networks. The functional form proposed
in Eqs. (8) or (9) works very well for the data of the current
study and Webb et al. [16].
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